1300

Selective Rapid Transfer-hydrogenation of Aromatic Nitro-compounds

By lan D. Entwistle,* Shell Research Ltd., Sittingbourne, Kent

Robert A. W. Johnstone * and T. Jeffery Povall, The Robert Robinson Laboratories, The University, Liverpool L69 3BX

Reduction of mono- and poly-nitro-aromatic compounds was effected rapidly, selectively, and in high yield by transfer of hydrogen from cyclohexene to the substrate *via* palladium–charcoal catalyst. The usefulness of the method is not affected by the presence of a variety of other functional groups, except for halogen which is removed during hydrogenation and sulphur-containing systems which retard and sometimes stop the reaction.

THE effectiveness of transfer-hydrogenation of aromatic nitro-compounds to produce amino compounds was demonstrated over 20 years ago,¹ but subsequent general application of this mild, convenient technique in synthesis has not followed.² Under the earlier reported optimum reaction conditions, refluxing the nitro-compound in ethanol with cyclohexene and Pd–C catalyst (catalyst: substrate ratio 10^{-2} : 1), inordinately long reaction times were recorded and many non-specific reductions noted; ¹ this has resulted in the method receiving little attention as an alternative to ordinary catalytic hydrogenation or metal–acid reductions of nitro-groups. That the selective reduction of aromatic nitro-compounds is still of considerable interest is shown by recent communications.³

Our interest in this transfer-hydrogenation was occasioned by one of its reported ¹ but little studied advantages namely, the mono-reduction of polynitrobenzenes. Under the modified conditions reported here, o-, m-, and p-dinitrobenzene are rapidly and efficiently reduced to the corresponding o-, m-, and p-nitroaniline, contrary to an earlier report that only m-dinitrobenzene could be reduced successfully. Similarly, we have reduced other mono- and di-nitro-aromatic compounds.

¹ E. A. Braude, R. P. Linstead, and K. R. H. Wooldridge, J. Chem. Soc., 1954, 3586.

Typically, the nitro-compound is refluxed in ethanol with a large excess of cyclohexene in the presence of Pd-C catalyst (catalyst : substrate ratio 1:2). Generally, formation of product was observed almost immediately after refluxing commenced and the reactions were stopped when starting material was not detected by t.l.c. The used catalyst could generally be re-used up to six times before there was a noticeable deterioration in its efficiency. The short reaction times and the reduction of many different types of nitro-compound indicate that when large catalyst : substrate ratios are used, as in these experiments, the transfer of hydrogen does not involve specific donor-acceptor relationships as suggested earlier.¹ Rather, the reaction seems to be one involving separate donor dehydrogenation and acceptor hydrogenation. In agreement with the earlier work,¹ the nature of the hydrogen donor seems critical as shown for example by the inferior donor properties of cyclohexa-**1,3**-diene in comparison with cyclohexene.

Transfer-hydrogenation under the conditions reported here can achieve, in a more controlled and rapid manner, many reductions effected by catalytic hydrogenation.

² G. Brieger and T. J. Nestrick, *Chem. Rev.*, 1974, **74**, 567. ³ R. E. Lyle and J. L. LaMattina, *Synthesis*, 1974, 726;

³ R. E. Lyle and J. L. LaMattina, Synthesis, 1974, 726; T.-L. Ho and C. M. Wong, *ibid.*, p. 45.

Thus, large quantities of 3,6-dimethoxy-2-nitroaniline were conveniently obtained by transfer-hydrogenation of the readily available 4-methoxy-2,3-dinitroanisole.⁴

Although reduction of dinitroanilines was slower than for other nitro-compounds (Table), we did not experience pounds (I; $R = CH_2$ ·SH or CH_2 ·CH₂·SMe). However, with 2-nitrothiophen and 6-nitrobenzothiadiazole no reduction was observed.

Nitro-heterocyclic systems without sulphur were reduced normally, e.g. the conversions of 6-nitroindazole

	compoundo readera o, mensere,,,			
	1 ,			Reaction
Nitro-compound	Product	Yield (%)	M.p. (°C)	time (min)
4-Methoxy-2,3-dinitroanisole	3.6-Dimethoxy-2-nitroaniline	85	76 - 77	10
4-Methoxy-2,5-dinitroanisole	3,6-Dimethoxy-4-nitroaniline	85	152 - 153	10
4-Methoxy-2,6-dinitroanisole	2,5-Dimethoxy-3-nitroaniline	70	8889	15
2,6-Dinitroaniline	2-Amino-6-nitroaniline	95	158 - 159	30
4-Chloro-N-methyl-2,6-dinitroaniline	2-Amino-N-methyl-6-nitroaniline	85	7576	30
3,6-Dimethoxy-2-nitroaniline	2,3-Diamino-4-methoxyanisole	70	86-87	120
3,6-Dimethoxy-N-methyl-2-nitroaniline (m.p. 80-81°)	2-Amino-4-methoxy-3-methylaminoanisole (as hydrochloride)	80	decomp. 150	120
6-Nitroindazole	6-Aminoindazole	90		60
2-(2,6-Dinitroanilino)-N-methylpropion- amide	3,4-Dihydro-3-methyl-5-nitroquinoxalin- 2(1H)-one	60	222223	60
	2-(2-Amino-6-nitroanilino)-N-methyl- propionamide	.30	169170	

* Satisfactory spectral and analytical data have been obtained.

the difficulties reported earlier.¹ A particularly interesting example was the initial conversion of 2-(2,6-dinitroanilino)-*N*-methylpropionamide (I; $R = Me, R' = NH_2$) into the aniline (II; $R = Me, R' = NH_2$) followed by into 6-aminoindazole and of N-(3-nitro-2-pyridyl)tryptophan methyl ester into N-(3-amino-2-pyridyl)tryptophan methyl ester.

Transfer-hydrogenation was very effective in removing

cyclisation to 3,4-dihydro-3-methyl-5-nitroquinoxalin-2(1H)-one (III; R = Me) under the reaction conditions. This reduction-cyclisation is a possible alternative to an earlier described method of peptide end-group analysis.⁵ The general applicability of this reaction was indicated by the conversion of N-2,6-dinitrophenyl derivatives of amino-acid methyl esters (I; R = amino-acid sidechain, R' = OMe) into the corresponding quinoxalinones (III). The common amino-acids contain a variety of side-chains (e.g. $R = CH_2 \cdot OH$, $CH_2 \cdot SH$, $CH_2 \cdot CH_2 \cdot SMe$, CH₂Ph, CH₂-indol-3-yl, and CH₂-imidazol-2-yl), but only in the case of cysteine was difficulty encountered in that the CH₂·SH group was reduced to CH₃, thereby yielding the quinoxalinone (III; R = Me) rather than (III; $R = CH_2$ ·SH). The reaction sequence (I) \longrightarrow (III) was examined as a means of sequencing amino-acid residues in a peptide and these results are to be reported more fully in a later communication.

The hydrogen-transfer process was noticeably slower but went to completion with the sulphur-containing comhalogeno-substituents as demonstrated by the formation of 2-amino-N-methyl-6-nitroaniline from 4-chloro-Nmethyl-2,6-dinitroaniline.

EXPERIMENTAL

All the compounds reported are either known or simply derived from known compounds; new compounds were identified by elemental analysis and mass and n.m.r. spectra. In a typical reaction 4-methoxy-2,5-dinitroanisole was mixed with 10% Pd-C catalyst (0.5 mol. equiv.; ordinary commercial material) and cyclohexene (5-6 mol. equiv.) in ethanol. The solution was refluxed vigorously on a steam-bath for 10 min. After filtration from catalyst, which was washed with ethanol and re-used, the solution was evaporated to give 3,6-dimethoxy-2-nitroaniline. Typical reaction times are shown in the Table.

[5/145 Received, 22nd January, 1975]

⁴ R. Nietzki and F. Rechberg, Ber., 1890, 23, 1216.
⁵ M. Jutisz and W. Ritschard, Biochem. Biophys. Acta, 1955, 17, 548; V. M. Ingram, ibid., 1956, 20, 577.